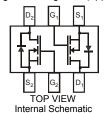


2N7002DW

DUAL N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR


Features


- Dual N-Channel MOSFET
- Low On-Resistance
- Low Gate Threshold Voltage
- Low Input Capacitance
- Fast Switching Speed
- Low Input/Output Leakage
- Ultra-Small Surface Mount Package
- Lead Free/RoHS Compliant (Note 2)
- Qualified to AEC-Q101 Standards for High Reliability
- "Green" Device (Note 3 and 4)

Mechanical Data

- Case: SOT-363
- Case Material: Molded Plastic. "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Solderable per MIL-STD-202, Method 208
- Lead Free Plating (Matte Tin Finish annealed over Alloy 42 leadframe).
- Terminal Connections: See Diagram
- Marking Information: See Page 3
- Ordering Information: See Page 3
- Weight: 0.006 grams (approximate)

SOT-363

Maximum Ratings @TA = 25°C unless otherwise specified

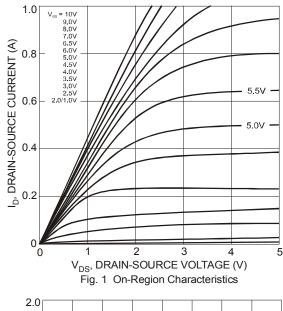
Characterist	tic	Symbol	Value	Units		
Drain-Source Voltage		V_{DSS}	60	V		
Drain-Gate Voltage $R_{GS} \le 1.0 M\Omega$		V_{DGR}	60	V		
Gate-Source Voltage	Continuous Pulsed	V_{GSS}	±20 ±40	V		
Drain Current (Note 1)	Continuous Continuous @ 100°C Pulsed	I _D	115 73 800	mA		

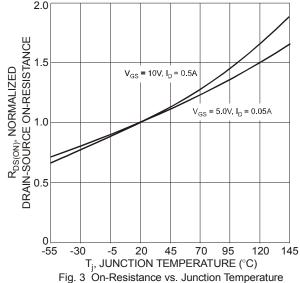
Thermal Characteristics @TA = 25°C unless otherwise specified

Characteristic	Symbol	Value	Units
Total Power Dissipation Derating above T _A = 25°C (Note 1)	Pd	200 1.60	mW mW/°C
Thermal Resistance, Junction to Ambient	$R_{ hetaJA}$	625	°C/W
Operating and Storage Temperature Range	T _{j,} T _{STG}	-55 to +150	°C

Notes:

- 1. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
- No purposefully added lead.
- 3. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
- Product manufactured with Date Code UO (week 40, 2007) and newer are built with Green Molding Compound. Product manufactured prior to Date Code UO are built with Non-Green Molding Compound and may contain Halogens or Sb2O3 Fire Retardants.




Electrical Characteristics @TA = 25°C unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 5)							
Drain-Source Breakdown Voltage		BV _{DSS}	60	70		V	$V_{GS} = 0V, I_D = 10\mu A$
Zero Gate Voltage Drain Current	@ $T_C = 25^{\circ}C$ @ $T_C = 125^{\circ}C$	I _{DSS}			1.0 500	μΑ	V _{DS} = 60V, V _{GS} = 0V
Gate-Body Leakage		I _{GSS}		_	±10	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage		V _{GS(th)}	1.0		2.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
Static Drain-Source On-Resistance @ T _i = 25°C				3.2	7.5	Ω	$V_{GS} = 5.0V, I_D = 0.05A$
	@ T _j = 125°C	R _{DS (ON)}	_	4.4	13.5	5.2	V _{GS} = 10V, I _D = 0.5A
On-State Drain Current		I _{D(ON)}	0.5	1.0	_	Α	V _{GS} = 10V, V _{DS} = 7.5V
Forward Transconductance		g FS	80	_	_	mS	V _{DS} = 10V, I _D = 0.2A
DYNAMIC CHARACTERISTICS							
Input Capacitance		C _{iss}		22	50	рF	
Output Capacitance		Coss		11	25	pF	$V_{DS} = 25V, V_{GS} = 0V, f = 1.0MHz$
Reverse Transfer Capacitance		C _{rss}		2.0	5.0	pF	
SWITCHING CHARACTERISTICS							
Turn-On Delay Time		t _{D(ON)}		7.0	20	ns	$V_{DD} = 30V, I_D = 0.2A, R_L = 150\Omega,$
Turn-Off Delay Time		t _{D(OFF)}	_	11	20	ns	V_{GEN} = 10V, R_{GEN} = 25 Ω

Notes:

5. Short duration pulse test used to minimize self-heating effect.

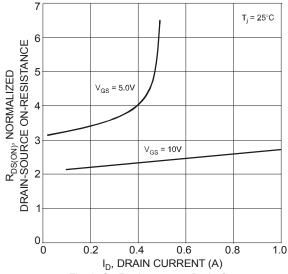


Fig. 2 On-Resistance vs. Drain Current

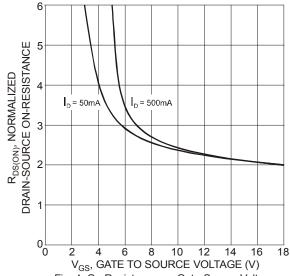
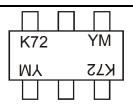


Fig. 4 On-Resistance vs. Gate-Source Voltage

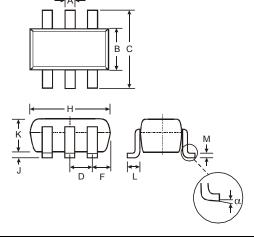


Ordering Information (Note 6)

Part Number	Case	Packaging
2N7002DW-7-F	SOT-363	3000/Tape & Reel

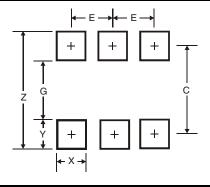
Notes: 6. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information



K72 = Product Type Marking Code YM = Date Code Marking Y = Year ex: N = 2002 M = Month ex: 9 = September

Date Code Key


Year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Code	J	K	L	М	N	Р	R	S	Т	U	V	W	Х	Υ	Z
Month	Jan	Fe	b I	Mar	Apr	May	Ju	n	Jul	Aug	Sep	Oc	t I	Nov	Dec
Code	1	2		3	4	5	6		7	8	9	0		N	D

Package Outline Dimensions

SOT-363					
Dim	Min	Max			
Α	0.10	0.30			
В	1.15	1.35			
С	2.00	2.20			
D	0.65 No	ominal			
F	0.30	0.40			
Н	1.80	2.20			
J	_	0.10			
K	0.90	1.00			
L	0.25	0.40			
М	0.10	0.25			
α	0°	8°			
All Dimensions in mm					

Suggested Pad Layout

Dimensions	Value (in mm)
Z	2.5
G	1.3
X	0.42
Y	0.6
С	1.9
Е	0.65

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.